The Problems

1. (20 points) Do one of the following.

 (a) The base of a solid is the region in the first quadrant bounded by the graphs of $y = x^2$ and $y = \sqrt{x}$. The cross sections of the solid perpendicular to the x-axis are semicircles whose diameters lie in the xy-plane. Find the volume of this solid.

 (b) Find the volume of the solid generated by revolving the region bounded by the curve $y = \frac{4}{x^2}$, the vertical line $x = 1$ and the horizontal line $y = \frac{1}{2}$ about the line $x = 2$.

2. (20 points) Do one of the following.

 (a) A rock climber is about to haul up 21 pounds of equipment that has been hanging beneath her on 90 feet of rope that weighs 0.3 lb ft. How much work will it take?

 (b) A storage tank is a right circular cylinder 20 feet long and 8 feet in diameter with a horizontal axis. If the tank is half full of olive oil weighing 57 lb ft^3, find the work done in emptying the tank through an outlet that is 6 feet above the top of the tank.

3. (20 points) Do one of the following.

 (a) Use integration by parts to prove the following reduction formula is true.
 $$\int \sec^n(x) \, dx = \frac{1}{n-1} \sec^{n-2}(x) \tan(x) + \frac{n-2}{n-1} \int \sec^{n-2}(x) \, dx.$$

 (b) Use the Useful Information for Sequences provided below to find the formula for
 $$\sum_{k=0}^{n} k \cdot 5^k$$

4. (10 points each) Set up any four of the following to the point where the problem can be finished by citing a formula from the Integral Table Handout. Be sure to cite the appropriate formula(s). Do not use a calculator.

 (a)
 $$\int \frac{1}{1 + \sqrt{y}} \, dy$$
(b) \[\int x^3 \cos (x^2) \, dx \]

(c) \[\int \frac{\sin (t)}{(3 + \cos (t))^2} \, dt \]

(d) \[\int x \sqrt{x + 2} \, dx \]

(e) \[\int \frac{x}{9 + 4x^4} \, dx \]

(f) \[\int \frac{x + 3}{\sqrt{x^2 + 2x - 8}} \, dx \]

Useful Information about Sequences

<table>
<thead>
<tr>
<th>(D_k [k^n] = nk^{n-1})</th>
<th>(D_k [c^k] = (c - 1) c^k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (a(k) = k^n), then (A(k) = \frac{1}{n+1} k^{n+1})</td>
<td>If (a(k) = c^k), then (A(k) = \frac{1}{c-1} c^k)</td>
</tr>
<tr>
<td>If (D_k [A(k)] = a(k)), then (\sum_{k=0}^{n} a(k) = A(k)</td>
<td>_{0}^{n+1})</td>
</tr>
</tbody>
</table>

\[
\sum_{k=0}^{n} U(k) \ D_k [V(k)] = U(k) \ V(k) \bigg|_{0}^{n+1} - \sum_{k=0}^{n} V(k+1) \ D_k [U(k)] \quad \text{(Discrete Integration by Parts)}
\]