Directions: Cite any use of technology. For partial credit, if you are unsure of your answer to a problem be sure to describe what you do know and where you think your error is. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

I (10 points each) Do any three (3) of the following problems.

1. Write inequalities that describe the region consisting of all points between, but not on, the spheres of radius r and R centered at the origin, where $r < R$.

2. Find the area of the triangle formed by points $P(2,0,-3)$, $Q(3,1,0)$, $R(5,2,2)$.

3. If \overrightarrow{a}, \overrightarrow{b}, and \overrightarrow{c} are vectors in \mathbb{R}^3, state whether each expression is meaningful. If it is, state whether it is a scalar or a vector.
 (a) $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$
 (b) $\overrightarrow{a} \times (\overrightarrow{b} \cdot \overrightarrow{c})$
 (c) $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$
 (d) $(\overrightarrow{a} \cdot \overrightarrow{b}) \times \overrightarrow{c}$
 (e) $(\overrightarrow{a} \cdot \overrightarrow{b}) \times (\overrightarrow{c} \cdot \overrightarrow{d})$
 (f) $(\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{c} \times \overrightarrow{d})$

4. Identify the following quadric surfaces by name (e.g., sphere, hyperboloid of one sheet, et cetera).
 Do Not Sketch.
 (a) $y^2 + z^2 = 1 - 4x^2$
 (b) $y^2 + z^2 = x$
 (c) $y^2 + z^2 = 1$
 (d) $y = z^2 - x^2$
 (e) $y^2 + z^2 = 1 + x^2$
 (f) $4x^2 - y^2 + z^2 + 8x + 8z = -20$

II (15 points each) Do any two (2) of the following problems.

1. Suppose \overrightarrow{a} is a three-dimensional unit vector in the first octant that starts at the origin and makes angles of 60° and 72° with the positive x- and y- axes, respectively. What are the components of \overrightarrow{a}?

2. Given non-zero vectors \overrightarrow{a}, \overrightarrow{b} for which Proj$_{\overrightarrow{a}} \overrightarrow{b}$ is also non-zero, show that the vector $\overrightarrow{b} - \text{Proj}_{\overrightarrow{a}} \overrightarrow{b}$ is orthogonal to \overrightarrow{a}. Do not give a geometric argument: use the dot product.

3. Suppose L is the line that passes through the point $P(0,2,-1)$ and is parallel to the line with parametric equations $x = 1 + 2t$, $y = 3t$, $z = 5 - 7t$. Find the points where L meets the three coordinate planes.
4. Write an equation in parametric form for the line of intersection of the planes \(x + y + z = 1 \) and \(x + z = 0 \).

\textbf{III} (20 points each) Do any two (2) of the following problems.

1. Write an equation for either of the planes that are parallel to the plane \(x + 2y - 2z = 1 \) and are two units away from it.

2. If \(\overrightarrow{a} \cdot \overrightarrow{c} = \overrightarrow{b} \cdot \overrightarrow{c} \), must it be the case that \(\overrightarrow{a} = \overrightarrow{b} \)? If so, explain why. If not, provide a counterexample.

3. Find an equation for the plane that contains the parallel lines
\[
\frac{x - 3}{2} = \frac{y + 4}{5} = \frac{3 - z}{6} \quad \text{and} \quad \frac{x + 4}{2} = \frac{y - 7}{5} = \frac{z + 1}{6}.
\]

4. Find parametric equations for the line through the point \((0,1,2)\) that is parallel to the plane \(x + y + z = 2 \) and perpendicular to the line \(x = 1 + t, \ y = 1 - t, \ z = 2t \).