The Problems

1. Show that the function $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ is a linear transformation.

\[T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + 5x_2 \\ 0 \\ 2x_1 - 3x_2 \end{bmatrix}. \]

2. Do one of the following.

 (a) Without using technology, compute the determinant of the matrix

 \[
 \begin{bmatrix}
 0 & -1 & 0 & 1 \\
 -2 & 3 & 1 & 4 \\
 1 & -2 & 2 & 3 \\
 0 & 1 & 0 & -2
 \end{bmatrix}.
 \]

 (b) The characteristic polynomial of the matrix

 \[
 \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

 is $\lambda^2 (\lambda - 1)^2$. Find the eigenvalues and determine a basis for each eigenspace.

3. Do one of the following.

 (a) Suppose \overrightarrow{v} is an eigenvector of the matrix A with associated eigenvalue 3. Explain why \overrightarrow{v} is also an eigenvector for the matrix $A^2 + 4I_n$. What is the associated eigenvalue?

 (b) Suppose that A is a 4×4 matrix with exactly two distinct eigenvalues, 5 and -9 and let E_5 and E_{-9} be the corresponding eigenspaces, respectively. Write all possible characteristic polynomials of A, in factored form, that are consistent with $\dim (E_5) = 1$.

4. Do one of the following.

 (a) Is the matrix $A = \begin{bmatrix} 1 & 0 \\ 10 & 2 \end{bmatrix}$ diagonalizable? If not, explain why not. If so, find an invertible matrix S for which $S^{-1}AS$ is diagonal.
(b) The matrices $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ are similar. Exhibit a matrix S for which $B = S^{-1}AS$.

5. Do two of the following.

(a) Show that the set, $W = \left\{ A \in \mathbb{R}^{3 \times 3} : \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \text{ is an eigenvector of } A \right\}$ is a subspace of $\mathbb{R}^{3 \times 3}$.

(b) Find a basis for the subspace $W = \{ A \in \mathbb{R}^{2 \times 2} : \text{trace} (A) = 0 \}$. Be sure to show that your basis both spans W and is linearly independent.

(c) Suppose $T : \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation such that $T \begin{bmatrix} 3 \\ -5 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $T \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}$. Determine $T \begin{bmatrix} 7 \\ -11 \end{bmatrix}$.