Mathematics 232-A
Exam 2
Spring 2006

February 23, 2006

Name

Technology used:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any three (3) of these computational problems

C.1. Is the set of vectors $S = \{ w_1, w_2, w_3, w_4 \}$ linearly dependent or linearly independent? If it is linearly dependent, first write one of the w’s as a linear combination of the others and then write the set T that is a subset of S, is linearly independent, and for which $< T >= < S >$

1. The set S is linearly dependent because: the coefficient matrix for the system of equations $\alpha_1 w_1 + \alpha_2 w_2 + \alpha_3 w_3 + \alpha_4 w_4 = 0$

\[
\begin{bmatrix}
7 & 2 & 4 & 1 \\
3 & 5 & 3 & 9 \\
5 & 3 & 3 & 7 \\
4 & 9 & 8 & 3 \\
2 & 7 & 6 & 1
\end{bmatrix}
\]

which has reduced row echelon form:

\[
\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

Since there is no leading one in the last column there are infinitely many solutions to the system and there exists a non-trivial relation of dependence for S.

C.2. Write each of the following complex numbers in the form $a + bi$.

(a) $i (3 - 2i) + 7 (-2 + i) = (3i + 2) + 7 (-2 - i) = -12 - 4i$

(b) $(4 - 2i) (-3 + i) = -10 + 10i$

(c) $\frac{2-i}{3+4i} = \frac{2}{25} - \frac{11}{25}i$ [Multiply by $\frac{3-4i}{3-4i}$ and simplify.]

C.3. Consider the following vectors in C^4.

\[
\vec{v}_1 = \begin{bmatrix}
1/2 \\
1/2 \\
1/2 \\
1/2
\end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix}
1/2 \\
1/2 \\
-1/2 \\
-1/2
\end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix}
1/2 \\
1/2 \\
1/2 \\
1/2
\end{bmatrix}
\]

Find all vectors \vec{v}_4 in R^4 so that $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ form an orthonormal set.

Although you don’t need it, the formula for the Gram-Schmidt process is

\[
\vec{u}_i = \vec{v}_i - \left(\frac{< \vec{v}_i, \vec{u}_1 >}{< \vec{u}_1, \vec{u}_1 >} \right) \vec{u}_1 - \cdots - \left(\frac{< \vec{v}_i, \vec{u}_{i-1} >}{< \vec{u}_{i-1}, \vec{u}_{i-1} >} \right) \vec{u}_{i-1}
\]
2. Since the given vectors are already orthonormal we look for \(\vec{x} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \) whose inner product with each of \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) is zero. This gives us the system of equations

\[
\begin{align*}
\frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}c + \frac{1}{2}d &= 0 \\
\frac{1}{2}a - \frac{1}{2}b - \frac{1}{2}c - \frac{1}{2}d &= 0 \\
\frac{1}{2}a - \frac{1}{2}b + \frac{1}{2}c - \frac{1}{2}d &= 0
\end{align*}
\]

which has solution set \(S = \left\{ d \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} : d \in \mathbb{C} \right\} \). The only vectors in this set that have norm equal to 1 are \(\begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \) and \(\begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix} \).

C.4. The matrix \(A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \) has the property that there is at least one vector \(\vec{x} \) for which \(A\vec{x} = 5\vec{x} \). Find all such vectors.

3. \(A\vec{x} = 5\vec{x} \) can be rewritten as the system of equations

\[
\begin{align*}
4x - 2y &= 5x \\
-x + 3y &= 5y
\end{align*}
\]

and this system can be rewritten as the homogenous system

\[
\begin{align*}
-x - 2y &= 0 \\
-x - 2y &= 0
\end{align*}
\]

The solution set is: \(S = \left\{ x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix} : x_2 \in \mathbb{C} \right\} \).

Do any two (2) of these problems from the text, homework, or class.

You may NOT just cite a theorem or result in the text. You must prove these results.

M.1. Prove that if the matrix \(A \) is nonsingular and \(B \) is any appropriately sized matrix, then \(N(AB) \subseteq N(B) \).

1. Let \(\vec{x} \) be a vector in \(N(AB) \) so that \(AB(\vec{x}) = \vec{0} \). This means \(A(B\vec{x}) = \vec{0} \) and since \(A \) is nonsingular there is only the trivial solution to this matrix equation, namely, \(B\vec{x} = \vec{0} \) which shows \(\vec{x} \in N(B) \).

M.2. Prove DMAM (Distributivity across Matrix Addition): If \(\alpha \in \mathbb{C} \), and \(A, B \in M_{mn} \), then \(\alpha (A + B) = \alpha A + \alpha B \).
2. Let i, j be any indices satisfying $1 \leq i \leq m, 1 \leq j \leq n$ then

$$[\alpha (A + B)]_{ij} = \alpha [A + B]_{ij}$$

$$= \alpha (|A|_{ij} + |B|_{ij})$$

$$= \alpha |A|_{ij} + \alpha |B|_{ij}$$

$$= [\alpha A]_{ij} + \alpha |B|_{ij}$$

$$= [\alpha A + \alpha B]_{ij}$$

Since this equality holds for every entry of the two matrices, we have $\alpha (A + B) = \alpha A + \alpha B$.

M.3. Prove if $\{w_1, w_2, w_3\}$ is a linearly dependent set in \mathbb{C}^{23}, then the set

$$\{2w_1 + w_2 + 3w_3, -3w_1 + 2w_2 + 4w_3, w_1 + 2w_2 + 3w_3\}$$

is linearly dependent.

3. Consider the relation of linear dependence

$$\beta_1 (2w_1 + w_2 + 3w_3) + \beta_2 (-3w_1 + 2w_2 + 4w_3) + \beta_3 (w_1 + 2w_2 + 3w_3) = 0$$

which, using distributivity, commutativity and associativity can be rewritten as

$$(2\beta_1 - 3\beta_2 + \beta_3) w_1 + (\beta_1 + 2\beta_2 + 2\beta_3) w_2 + (3\beta_1 + 4\beta_2 + 3\beta_3) w_3 = 0$$

Since the set $\{w_1, w_2, w_3\}$ is linearly dependent, there is a nontrivial solution to this system of equations. That is, there are scalars $\alpha_1, \alpha_2, \alpha_3$, not all zero, that satisfy $\alpha_1 w_1 + \alpha_2 w_2 + \alpha_3 w_3 = 0$. Since the system of equations

$$2\beta_1 - 3\beta_2 + \beta_3 = \alpha_1$$

$$\beta_1 + 2\beta_2 + 2\beta_3 = \alpha_2$$

$$3\beta_1 + 4\beta_2 + 3\beta_3 = \alpha_3$$

has a nonsingular coefficient matrix there is a unique solution. Since at least one of the α_i is not zero, the ith equation of the system shows that at least one of the β_i’s must not be zero. Hence there is a nontrivial relation of dependence

$$\beta_1 (2w_1 + w_2 + 3w_3) + \beta_2 (-3w_1 + 2w_2 + 4w_3) + \beta_3 (w_1 + 2w_2 + 3w_3) = 0$$

and the given set $\{2w_1 + w_2 + 3w_3, -3w_1 + 2w_2 + 4w_3, w_1 + 2w_2 + 3w_3\}$ is linearly dependent.

Do one (1) of these problems you’ve not seen before.

T.1. Suppose $A_{n \times m}$ and $B_{m \times n}$ are matrices such that $AB = I_n$. Let \overrightarrow{b} be a particular vector in \mathbb{R}^n.

Show that the system of equations $A\overrightarrow{x} = \overrightarrow{b}$ must be consistent.

1. Since $(AB)\overrightarrow{b} = I_n\overrightarrow{b} = \overrightarrow{b}$ then by associativity $A(B\overrightarrow{b}) = \overrightarrow{b}$ and the vector $\overrightarrow{x} = B\overrightarrow{b}$ is a solution of the matrix equation $A\overrightarrow{x} = \overrightarrow{b}$. So the corresponding system of equations must be consistent.

T.2. Use the Principle of Mathematical Induction to prove that the statement $P(n)$ given by $\sum_{k=1}^{n} (2k - 1) = n^2$ holds for all positive integers.

2. $P(1)$ is true since $\sum_{k=1}^{1} (2k - 1) = (2 - 1) = 1 = 1^2$.

Suppose $P(n)$ is true. That is, $\sum_{k=1}^{n} (2k - 1) = n^2$.

Then, $\sum_{k=1}^{n+1} (2k - 1) = [\sum_{k=1}^{n} (2k - 1)] + 2(n + 1) - 1 = n^2 + 2n + 1 = (n + 1)^2$ and the truth of $P(n + 1)$ follows from the truth of $P(n)$. Hence by the principle of mathematical induction, $\sum_{k=1}^{n} (2k - 1) = n^2$ for every positive integer n.

3