Math 258 – Fourth Hour Exam – Spring, 2004

Name _______________________________

Show your work. Partial credit will be given where appropriate. 16 points per problem

Use the following function for problems 1-2.

\[f(x, y) = 7x^2 - 5xy + y^2 + x - y + 6 \]

1. a. Find \(f(2,3) \)

b. Find \(\frac{\partial f}{\partial x} \)

c. Find \(\frac{\partial f}{\partial y} \)

d. Find \(\frac{\partial^2 f}{\partial x \partial y} \)

2. Find all points \((x,y)\) where \(f(x,y)\) has a possible relative maximum or minimum. Use the second-derivative test to determine the nature of \(f(x,y)\) at each of these points.
3. Public health officials in a northern state are concerned with the death rate in their state. Suppose that the officials have approximated the death rate during the winter months as a function $f(x, y, z)$ where x is the average daily temperature, y is the number of days of snow during the period and z is the number of available emergency medical workers.

a) Explain why you would expect $\frac{\partial f}{\partial x}$ to be negative.

b) Explain why you would expect $\frac{\partial f}{\partial y}$ to be positive.

c) Would you expect $\frac{\partial f}{\partial z}$ to be positive or negative? Why?

4. Approximate the area bounded by the graph of the function $f(x) = x^3$ and the x-axis between $x = 3$ and $x = 4$. Use a Riemann sum with 4 subintervals and use the right endpoints of the subintervals to approximate this area. Draw a picture of the graph of $f(x)$. Shade the region whose area you computed in the Riemann sum.
5. Find:

a) \[\int_{0}^{4} (x^3 + 2) \, dx \]

b) \[\int \left[\frac{\sqrt{t}}{4} - 4(t - 3)^2 \right] \, dt \]

c) \[\int e^{-x} \, dx \]

6. Recall that the Cobb-Douglas production function is \(f(x, y) = Cx^A y^{(1-A)} \) where \(f(x, y) \) is units of production, \(x \) is units of labor, \(y \) is units of capital and \(C \) and \(A \) are constants. Suppose for a particular production line, the Cobb-Douglas production function is \(f(x, y) = 25(x)^{\frac{2}{3}} (y)^{\frac{1}{3}} \)

a) Show that, if there are no units of labor available, production will be 0.

b) Suppose labor costs $50 per unit and capital costs $75 per unit. Write the cost function \(C(x, y) \) that shows the cost of production when \(x \) units of labor and \(y \) units of capital are used.

c) Use the technique of Lagrange multipliers to find the maximum level of production on this line when $1350 are available for labor and capital.
Extra Credit: What’s wrong with the Mariners?

- Bad pitching
- Bad hitting
- There’s something wrong with the Mariners?
- Who are the Mariners?