1 Additional Exercises: Finite Group of Motions

1. Let D_n denote the dihedral group. Express the product $x^2yx^{-1}y^{-1}x^3y^3$ in the form x^iy^j in D_n.

2. List all the subgroups of D_4 and determine which are normal.

3. Find all proper normal subgroups and identify the quotient groups of the groups D_{13} and D_{15}.

4. Prove any discrete group G consisting of rotations about the origin is cyclic and is generated by ρ_θ where θ is the smallest angle of rotation in G.

 (a) Advanced Calculus students, or others interested in the completeness property of the real numbers, may wish to prove that any discrete group G consisting of rotations about the origin really does have a smallest angle of rotation.

5. Let G be a subgroup of M that contains rotations about two different points. Prove algebraically that G contains a translation.

6. Determine the point group for each of the patterns depicted in the figure on the handout labelled "Extra Exercise: Finite Group of Motions #6."

7. Prove that every discrete subgroup of O is finite.

8. Prove the group of symmetries of the frieze pattern

 $\cdots \text{E E E E E E E E E E} \cdots$

 is isomorphic to the direct product $C_2 \times C_\infty$ of a cyclic group of order 2 and an infinite cyclic group.

9. Let G be the group of symmetries of the frieze pattern

 $\cdots \oplus \oplus \oplus \oplus \oplus \oplus \cdots$

 (a) Determine the point group \mathcal{G} of G.

 (b) For each element \overline{g} of \mathcal{G}, and each element g of G which represents \overline{g}, describe the action of g geometrically.

 (c) Let H be the subgroup of translations in G. Determine $[G : H]$.

10. Let G be a discrete group in which every element is orientation-preserving. Prove the point group \mathcal{G} is a cyclic group of rotations and there is a point p in the plane such that the set of group elements which fix p is isomorphic to \mathcal{G}.

11. Let N denote the group of rigid motions of the line $l = \mathbb{R}^1$. Some elements of N are

 $t_a : t_a(x) = x + a$ and $s : s(x) = -x$.

(a) Show that \{t_a, t_a s\} are all of the elements of \(N\), and describe their actions on \(l\) geometrically. [Note that \(|N|\) is infinite since there is a distinct \(t_a\) for each real number \(a\).]

(b) Compute the products \(t_a b, s t_a, ss\).

(c) Find all discrete subgroups of \(N\) which contain a translation. It will be convenient to choose your origin and unit length with reference to the particular subgroup. Prove your list is complete.

12. Prove if the point group of a lattice group \(G\) is \(C_6\), then \(L = L_G\) is an equilateral triangular lattice, and \(G\) is the group of all rotational symmetries of \(L\) about the origin.

13. Prove if the point group of a lattice group \(G\) is \(D_6\), then \(L = L_G\) is an equilateral triangular lattice, and \(G\) is the group of all symmetries of \(L\).