1 Problems

1.1 Geometry Associated with Real Positive Definite Form

1. Let \(W \) be a subspace of a Euclidean space \(V \). Prove \(W = W^\perp \).

2. Find the matrix of the projection \(T : \mathbb{R}^3 \to \mathbb{R}^2 \) such that the image of the standard basis of \(\mathbb{R}^3 \) forms an equilateral triangle and \(T(e_1) \) points in the direction of the \(x \)-axis.

3. Let \(w \in \mathbb{R}^n \) be a vector of unit length.

 (a) Prove the matrix \(P = I - 2ww^t \) is orthogonal.

 (b) Prove multiplication by \(P \) is a reflection through the space \(W^\perp \) orthogonal to \(w \). That is, prove if we write an arbitrary vector \(v = cw + w' \) where \(w' \in W^\perp \), then \(Pv = -cw + w' \).

 (c) Let \(X,Y \) be arbitrary vectors in \(\mathbb{R}^n \) with the same length. Determine a vector \(w \) such that \(PX = Y \). [Hint: draw generic \(X + Y \) and \(X - Y \).]

4. Use the above problem (number 3) to prove every orthogonal \(n \times n \) matrix is a product of at most \(n \) reflections.

1.2 Hermitian Forms

1. Prove a matrix \(A \) is hermitian if and only if the associated form \(X^*AX \) is a hermitian form.

2. Is \(\langle X,Y \rangle = x_1y_1 + ix_1y_2 - ix_2y_1 + ix_2y_2 \) on \(\mathbb{C}^2 \) a hermitian form?

3. Prove the determinant of a hermitian matrix is a real number.

4. Let \(P_n \) be the vector space of polynomials of degree less than or equal to \(n \).

 (a) Show

 \[
 \langle f, g \rangle = \int_0^{2\pi} f(e^{i\theta})g(e^{i\theta}) \, d\theta
 \]

 is a positive definite hermitian form on \(P_n \).

 (b) Find an orthonormal basis for this form when \(n = 3 \).

5. Determine whether or not the following rules define hermitian forms on the space \(\mathbb{C}^{m \times n} \) of complex matrices and, if so, determine their signature.

 (a) \(\langle A, B \rangle = \text{Trace}(A^*B) \).
(b) $\langle A, B \rangle = \text{Trace} (\bar{AB})$.

1.3 Spectral Theorem

1.

(a) Find a unitary matrix P so that PAP^* is diagonal when

$$A = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}.$$

(b) Find a real orthogonal matrix P so that PAP^t is diagonal when

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

2. Prove a real symmetric matrix is positive definite if and only if all of its eigenvalues are positive.

1.4 Conics and Quadrics

1. Determine the type of the quadric

$$x^2 + 4xy + 2xz + z^2 + 3x + z - 6 = 0.$$

2.

(a) Describe the types of conic in terms of the signature of the quadratic form.
(b) Do the same for quadrics in R^3.